Glial calcium: homeostasis and signaling function.
نویسندگان
چکیده
Glial cells respond to various electrical, mechanical, and chemical stimuli, including neurotransmitters, neuromodulators, and hormones, with an increase in intracellular Ca2+ concentration ([Ca2+]i). The increases exhibit a variety of temporal and spatial patterns. These [Ca2+]i responses result from the coordinated activity of a number of molecular cascades responsible for Ca2+ movement into or out of the cytoplasm either by way of the extracellular space or intracellular stores. Transplasmalemmal Ca2+ movements may be controlled by several types of voltage- and ligand-gated Ca(2+)-permeable channels as well as Ca2+ pumps and a Na+/Ca2+ exchanger. In addition, glial cells express various metabotropic receptors coupled to intracellular Ca2+ stores through the intracellular messenger inositol 1,4,5-triphosphate. The interplay of different molecular cascades enables the development of agonist-specific patterns of Ca2+ responses. Such agonist specificity may provide a means for intracellular and intercellular information coding. Calcium signals can traverse gap junctions between glial cells without decrement. These waves can serve as a substrate for integration of glial activity. By controlling gap junction conductance, Ca2+ waves may define the limits of functional glial networks. Neuronal activity can trigger [Ca2+]i signals in apposed glial cells, and moreover, there is some evidence that glial [Ca2+]i waves can affect neurons. Glial Ca2+ signaling can be regarded as a form of glial excitability.
منابع مشابه
The acute inhibition of enteric glial metabolism with fluoroacetate alters calcium signaling, hemichannel function, and the expression of key proteins.
Glia play key roles in the regulation of neurotransmission in the nervous system. Fluoroacetate (FA) is a metabolic poison widely used to study glial functions by disrupting the tricarboxylic acid cycle enzyme aconitase. Despite the widespread use of FA, the effects of FA on essential glial functions such as calcium (Ca2+) signaling and hemichannel function remain unknown. Therefore, our goal w...
متن کاملCharacterization of Calcium-Mediated Intracellular and Intercellular Signaling in the rMC-1 Glial Cell Line.
Retinal Müller glial cells, in addition to providing homeostatic support to retinal neurons, have been shown to engage in modulation of neuronal activity and regulate vasomotor responses in the retina, among other functions. Calcium-mediated signaling in Müller cells has been implicated to play a significant role in the intracellular and intercellular interactions necessary to carry out these f...
متن کاملEmpowerment of Balb/C mouse neuron and glial cells in steroidogenesis after activation of the SHH signaling pathway and co-treatment with pregnenolone
Background: Steroid production has been reported in the asexual tissues of the nervous system. Stimulants are in the normal activity, function and function of the nervous system. Identifying the conduction pathways involved in glucocorticoids and enabling brain parenchymal cells can offset the balance in the active nervous system at old ages when the body is depleted. Therefore, in this stu...
متن کاملAstrocyte Function in Alcohol Reward and Addiction
Glial cells, particularly astrocytes, play essential roles in the regulation of neurotransmission, metabolism, and supply of energy substrates for synaptic transmission. One astrocyte can receive inputs from several hundreds of synapses, and synchronized neuronal activity correlates with astrocyte calcium signaling. Astrocyte pathology is a common feature of ethanol exposure in both humans and ...
متن کاملNeuronal and glial calcium signaling in Alzheimer's disease.
Cognitive impairment and emotional disturbances in Alzheimer's disease (AD) result from the degeneration of synapses and death of neurons in the limbic system and associated regions of the cerebral cortex. An alteration in the proteolytic processing of the amyloid precursor protein (APP) results in increased production and accumulation of amyloid beta-peptide (Abeta) in the brain. Abeta has bee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological reviews
دوره 78 1 شماره
صفحات -
تاریخ انتشار 1998